
	 © I n - S t a t 	 N o v e m b e r 1 6 , 2 0 0 9 	 m i c r o p r o c e ss o r r e p o r t

reportM I C R O P R O C E S S O R
www.MPRonline.com

	 	T h e i n s i d e r ’ s g u i d e t o m i c r o pr o c e s s o r h a r d w a r e 	

MicroMIPS Crams Code
New Processor Cores Introduce Denser 16/32-Bit Instruction Set

By Tom R. Halfhi l l {11/16/09-01}

Smaller is usually better for embedded processors, so MIPS Technologies is slimming down

its 1980s-vintage instruction-set architecture. A new set of 16- and 32-bit instructions—

dubbed microMIPS—uses less memory than existing 32-bit M IPS instructions and the

16-bit extensions added in the 1990s.
MicroMIPS will debut early next year in two

new embedded-processor cores, the M IPS32
M14K and M IPS32 M 14Kc. T he M 14K is an
improvement on the M IPS32 M 4K proces-
sor, introduced in 2002. It’s a relatively simple,
cacheless core intended for 32-bit microcon-
trollers in automobiles, industrial machinery,
consumer electronics, and office equipment.

Its bigger brother, the M14Kc, is an improve-
ment on the M IPS32 4KEc processor, intro-
duced in 2003. The M14Kc has an MMU with
a translation lookaside buffer (TLB), making
it suitable for sophisticated embedded operat-
ing systems that manage virtual memory. It’s
designed for advanced consumer electronics,
including DTVs, DVD players, set-top boxes,
home networking equipment, personal enter-
tainment devices, and digital cameras. Figure 1
shows how the M 14K and M 14Kc fit into the
MIPS product line.

Both new processors respond much faster to
interrupts and have better debugging features
than the MIPS cores they supersede. Both gain
advantages in clock speed, power consump-
tion, and core size when compared with ARM’s
Cortex-M3 and ARM 926 processors, and they
give ARM’s new Cortex-A5 a run for the money.

Figure 1. The new MIPS32 M14K and MIPS32 M14Kc processor cores introduce the micro-
MIPS 16/32-bit instruction set and anchor the lower end of the MIPS product line. The
M14K supersedes the M4K core, primarily for 32-bit microcontrollers. The M14Kc super-
sedes the 4KE core, offering an MMU for virtual-memory embedded operating systems.

74K

MIPS32 + microMIPS ISAs,
denser code, faster interrupts,

AHB, M14Kc MMU

M14K

M14Kc

4KS

M4K

4KE

4KSd: Secure core

M4K: Low-cost MCUs

4KE: L1 cache, MMU

24K

24KE

34K

24K: 8-stage pipeline,
 >900MHz (65nm)

24KE: DSP extensions

34K: hardware multithreading

1004K

74K: 15-stage dual-issue pipeline,
out-of-order execution, 1.6-2.5GHz

(40nm), 5,000Dmips

1004K: Multithreaded,
coherent multiprocessing

(1-4 cores), 1.3-2.0GHz (40nm)

m
i
c
r
o
M
I
P
S

� MicroMIPS Crams Code

	 © I n - S t a t 	 N o v e m b e r 1 6 , 2 0 0 9 	 m i c r o p r o c e ss o r r e p o r t

(See MPR 10/26/09-01, “ARM’s M idsize M ultiprocessor.”)
Both have new atomic read-modify-write instructions. And
the M14K has an optional accelerator that improves read/
write performance with flash memory—especially useful
for flash-based microcontrollers.

Overall, the new 16/32-bit microMIPS instruction-set
architecture (ISA) is the most important feature of the
M14K and M14Kc. According to MIPS, the memory foot-
print of executable code will shrink by about 35% while
suffering a performance hit of only about 2%. Yet the new
processors remain backward-compatible with the MIPS32
Release 2 ISA and existing MIPS32 software, because they
include a MIPS32 instruction decoder.

MicroMIPS Outruns MIPS16e
One exception to backward compatibility is that the micro-
MIPS ISA doesn’t support the branch-likely instructions in
MIPS32-R2. Those instructions, originally intended to tip
off the processor that a branch is probable, are infrequently
used and have been deprecated. T he new microMIPS
assembler automatically substitutes alternative instructions
in their place, so the difference should be transparent to
programmers.

Otherwise, existing MIPS32 software should run on the
M14K and M14Kc without modification. Of course, devel-
opers must recompile to reap the advantages of the new
microMIPS ISA. R ecompiling embedded software is less
earthshaking than recompiling PC software, so the require-
ment isn’t onerous—and the gains are worth it.

Shrinking executable code by 35% while reducing per-
formance by only 2% is impressive. At best, replacing every
32-bit instruction with a 16-bit equivalent would shrink the
code by about 50%, so a 35% reduction for a real-world
mix of 16- and 32-bit instructions is quite good. In com-
parison, the existing M IPS16e 16-bit extensions reduce
code size by 25% to 30%. But the performance difference
is striking. Whereas MIPS16e chokes throughput by about
30%, microMIPS exacts a mere 2% penalty. M icroMIPS
code is smaller than MIPS16e code but plays bigger.

MicroMIPS will help MIPS Technologies compete more
strongly for austere embedded systems. In particular,
MIPS hopes to win a larger share of the 32-bit microcon-
troller market, which is highly fragmented among multi-
ple vendors. No single CPU architecture rules this market.
Indeed, some microcontroller vendors hedge their bets by
using different 32-bit architectures in different product
lines. ARM has been making aggressive inroads with its
Cortex-M3 processor and older ARM7- and ARM9-family
cores. With the new M14K and M14Kc, MIPS has a chance
to gain share before one architecture (probably ARM)
dominates.

Shedding the TinyRisc Legacy
The MIPS architecture is overdue for this kind of overhaul.
Keep in mind that this early RISC architecture was designed

in the 1980s for high-performance workstations and servers,
not for embedded systems. In 1996, M IPS licensee LSI
Logic was among the first to recognize the potential of the
architecture for small iron. To reduce the amount of mem-
ory required for 32-bit code, LSI and M IPS T echnologies
collaborated on a new subset of 16-bit instructions called
MIPS-16 (or M IPS16). T he new instructions debuted in
LSI’s MIPS-compatible TinyRisc processor core. (See MPR
10/28/96-10, “LSI’s TinyRisc Core Shrinks Code Size.”)

It wasn’t a new idea. The year before, ARM had extended
its 32-bit RISC instruction set with 16-bit Thumb instruc-
tions. (See MPR 3/27/95-01, “Thumb Squeezes ARM Code
Size.”) But for MIPS, then part of Silicon Graphics, MIPS16
foreshadowed a strategic shift toward the embedded mar-
ket as Intel’s x86 began squeezing the R ISC architectures
out of servers and workstations. In 1999, after spinning off
from Silicon Graphics, M IPS T echnologies introduced its
first synthesizable embedded-processor cores. (See MPR
5/31/99-04, “Jade Enriches MIPS Embedded Family.”)

Owing to legal entanglements with LSI, MIPS was unable
to include M IPS16 in those first cores. A fter the prob-
lems were resolved, MIPS16 reappeared as MIPS16e. And
that’s where things stood until N ovember 2, when M IPS
announced microMIPS, a major overhaul of the 16/32-bit
instruction set.

MicroMIPS isn’t just an extension, as M IPS16 was.
MicroMIPS redraws the opcode map—the normally sac-
rosanct definition of an ISA. In fact, existing M IPS32
code wouldn’t run on the new M14K and M14Kc at all if
each processor didn’t have two instruction decoders. One
decoder handles microMIPS code, and the other handles
“legacy” MIPS32 code. MicroMIPS is almost a clean-slate
rethinking of the MIPS architecture.

MicroMIPS adds 15 new 32-bit instructions and converts
39 existing 32-bit instructions to 16-bit format. MicroMIPS
includes another 215 existing 32-bit instructions from the
MIPS32 ISA but remaps their binary opcodes. MIPS says
future MIPS64 processors could use microMIPS, too, so the
ISA is a genuinely new direction for the company. Table 1
lists all the new instructions.

Although M IPS says the microMIPS ISA does “code
compression,” it’s not really compression in the same sense
as data compression. Instructions aren’t compressed in
memory and expanded after fetching. Instead, MIPS short-
ened the most commonly used 32-bit instructions to 16
bits, so the opcodes use only half as much memory. Register
references and immediate values don’t necessarily shrink
along with the opcodes, so the ideal goal of 50% memory
reduction is unattainable.

A Unified 16/32-Bit ISA
Unlike ARM ’s original T humb, microMIPS is generally
modeless. Programs can freely mix 16- and 32-bit instruc-
tions in a single stream, without switching modes. How-
ever, a mode switch is necessary if a program uses both

�MicroMIPS Crams Code

	 © I n - S t a t 	 N o v e m b e r 1 6 , 2 0 0 9 	 m i c r o p r o c e ss o r r e p o r t

microMIPS and MIPS32 instructions, and special instruc-
tions are provided for this purpose.

In essence, these mode-switching instructions steer the
subsequent instruction stream to the corresponding instruc-
tion decoder. As mentioned above, the M14K and M14Kc
processors have separate decoders for each ISA. A lthough
the dual decoders have some redundant logic, they don’t
lengthen the five-stage pipelines inherited from the ances-
tors of these processors. Normally, a program will use one
ISA or the other, so mode switches should be rare.

Another difference between microMIPS and ARM’s origi-
nal Thumb is that interrupt handlers can mix 16- and 32-bit

instructions. There’s no need to switch modes for different-
length instructions when entering an interrupt routine. In
virtually every respect, microMIPS is a unified 16/32-bit
ISA. (ARM’s 16/32-bit T humb-2, introduced in 2003, is
similarly modeless and applicable to interrupt handlers; see
MPR 6/17/03-02, “ARM Grows More Thumbs.”)

Of course, chopping 32-bit instructions down to 16 bits
entails some compromises. M ost 16-bit instructions can
access only eight of the 32 general-purpose registers (GPR)
in the MIPS architecture, because the abbreviated instruc-
tions have only three register-address bits instead of five.
This compromise saves six bits if an instruction accesses

Table 1. MicroMIPS instruction set. This table includes all the new or reformatted 16- and 32-bit instructions in the microMIPS ISA. The table
omits the 215 microMIPS instructions whose binary opcodes differ from existing MIPS32 instructions but whose mnemonics and functions
remain the same. (All those instructions are 32 bits long.) Most new instructions resemble existing instructions and will be familiar to MIPS
assembly-language programmers. Note that some branch instructions lack the traditional MIPS delay slot—in effect, a null operation follow-
ing a branch that gives the processor time to calculate the branch-target address. *These instructions refer to results from the 32- x 16-bit
multiply-divide unit (MDU).

Instruction Description Instruction Description

New 32-Bit MicroMIPS Instructions

ADDIUPC Add program counter with immediate JALX Jump and link, switch to microMIPS

BEQZC Branch if = 0, no delay slot JALX32 Jump and link, switch to MIPS32

BNEZC Branch if <> 0, no delay slot LWM32 Load multiple words

BGEZALS Branch if >= 0, short delay slot LWP Load word pair

BLTZALS Branch if <= 0, short delay slot LWXS Load word, scaled, indexed

JALRS Jump and link, short delay slot SWM32 Store multiple words

JALRS.HB Jump and link with hazard barrier, short delay slot SWP Store pair of registers

JALS Jump and link, short delay slot

New 16-Bit MicroMIPS Instructions

ADDIUR1SP Add stack pointer with immediate, unsigned LWM16 Load multiple words

ADDIUR2 Add register with encoded immediate LWGP Load word from GP

ADDIUSP Increment stack pointer LWSP Load word from stack pointer

ADDIUS5 Add to any GPR MFHI16 Move from high part of MDU output*

ADDIU16 Add, unsigned MFLO16 Move from low part of MDU output*

ANDI16 Logical AND immediate MOVE16 Move GPR to GPR

AND16 Logical AND MOVEP Move pair of registers

B16 Unconditional branch NOT16 Invert value

BEQZ16 Branch if = 0 OR16 Logical OR

BNEZ16 Branch if <> 0 SB16 Store byte

BREAK16 Trigger breakpoint exception SDDBP16 Trigger debug exception

JALR16 Jump and link SH16 Store halfword

JALRS16 Jump and link, short delay slot SLL16 Logical shift left

JR16 Jump register SRL16 Logical shift right

JRADDIUSP Jump register, increment stack pointer SUBU16 Subtract, unsigned

JRC Jump register, no delay slot SW16 Store word

LBU16 Load byte, unsigned SWSP Store to stack pointer

LHU16 Load halfword, unsigned SWM16 Store multiple words

LI16 Create immediate value XOR16 Logical XOR

LW16 Load word

� MicroMIPS Crams Code

	 © I n - S t a t 	 N o v e m b e r 1 6 , 2 0 0 9 	 m i c r o p r o c e ss o r r e p o r t

three registers—two registers for input operands and one
register to store the result. A few 16-bit instructions can
access 16 of the 32 registers.

MIPS16e instructions can address only eight GPRs, so
this compromise is nothing new. MicroMIPS does a little
better than MIPS16e, because a few 16-bit instructions can
read or write some operands in all 32 registers. The ARM
architecture has only 16 GPRs to begin with, even for 32-bit
instructions, so microMIPS doesn’t suffer in comparison
with Thumb-2.

Some 16-bit microMIPS instructions are limited to
manipulating fewer operands or smaller immediate values—
another common trade-off with shorter instructions. Indeed,
in many respects, microMIPS resembles the unified 16/32-
bit instruction sets of T humb-2 and ARC International’s
ARCompact, which appeared in 2002. (See the sidebar,
“ARCompact: An Elegant 16/32-Bit ISA,” in MPR 2/18/03-06,
“Soft Cores Gain Ground.”)

New Atomic Instructions
The M14K and M14Kc processors have two additional new
instructions that aren’t part of the microMIPS ISA. Both are
atomic memory operations. They are small but important
additions to the M IPS architecture, which has been ham-
pered by historical limitations in this regard. (In the 1980s,
strict RISC liturgy frowned on CISC-like instructions that
perform multiple operations directly on data in memory.)
The new atomic instructions perform read-modify-write
operations on memory and cannot be interrupted.

One new atomic instruction, ASET, sets an individual
bit within a byte. The instruction format includes an offset
from the memory address, so any bit within a 32-bit mem-
ory location can be flipped from 0 to 1. Until now, an equiv-
alent operation required three instructions (load a byte, set

the bit by applying an OR mask, save the byte), which were
interruptible. T he other new atomic instruction, ACLR,
clears any bit within a byte. It, too, replaces three instruc-
tions (load a byte, apply an AND mask, save the byte) and is
uninterruptible.

The ASET and ACLR instructions work by automatically
disabling interrupts while they’re busy. They may be unsuit-
able for some hard real-time code that absolutely can’t wait
for the instruction to finish an operation, particularly if the
memory is slow. Generally, however, the atomic instructions
will be useful when a program must modify data in memory
without fear that an interrupt will override the operation
and leave the data in an uncertain state.

New instruction sets require new software-development
tools. CodeSourcery’s SG++ GNU-based tools now support
both MIPS32 and microMIPS. Programmers can use a tradi-
tional command-line user interface or an Eclipse integrated
development environment (IDE). Also, MIPS has upgraded
its Navigator Integrated Component Suite (ICS) to support
microMIPS and MIPS32 in an Eclipse IDE. MIPS offers an
instruction-set simulator (IASim), a cycle-accurate simula-
tor (CASim), and an SoC development board with Xilinx
FPGAs for the M14K and M14Kc processors.

In addition, MIPS has enhanced its System Navigator (a
debug probe and profiler) to support both new processors,
whose debug features are improved over existing MIPS pro-
cessors. Among other things, the EJTAG debug channel works
at speeds up to 50MHz, and new trace options help program-
mers find elusive bugs hidden in the mass of trace data.

M14K: Fast MCU Core
Figure 2 is a block diagram of the M14K. It’s a small, cache-
less core ideal for 32-bit microcontrollers, but it’s not a
stripped-down model, and some features are configurable.

Figure 2. MIPS32 M14K processor block diagram. Parity-protected local memories substitute for L1 caches, so real-time applications can rely on
deterministic behavior. Separate instruction decoders handle existing MIPS32 instructions and new microMIPS instructions. Chip designers can choose
between a fast or small 32- x 16-bit multiply-divide unit (MDU). Optional features, shown in dark purple, include a debug unit, flash-memory accel-
erator, AHB-Lite bus controller, coprocessor interface (COP2), and user-defined instruction (UDI) interface.

UDI
I/F

COP2
I/F

Interrupt
I/F

MDU

GPR Decoder

microMIPS

MIPS32

Execution Unit

System
Coprocessor

Debug &
Profiler

Power
Mgt

Flash
Accelerator

AHB-Lite
BIU

I-SRAM
I/F

SRAM
Controller

D-SRAM
I/F

FMT
MMU

�MicroMIPS Crams Code

	 © I n - S t a t 	 N o v e m b e r 1 6 , 2 0 0 9 	 m i c r o p r o c e ss o r r e p o r t

Although it lacks the full-fledged MM U found in the
M14Kc, it does have a simple memory manager with fixed
mapping instead of a TLB. Chip designers can choose from
two hardware multiply-divide units: “small” or “fast.” The
fast one multiplies 32- x 16-bit operands in one clock cycle
and 32- x 32-bit operands in two cycles. Division has a
latency of 12 to 33 cycles.

Another configurable feature is the register set. T he
MIPS32 standard is 32 registers, each 32 bits wide. C hip
designers can implement additional sets of shadow regis-
ters for faster context switching. Instead of dumping reg-
isters to memory and restoring them after each switch, the
processor can instantly change a pointer to a shadow set
that holds the register values of the other context. Both the
M14K and M14Kc processors allow developers to imple-
ment 1, 2, 4, 8, or 16 sets of 32 registers.

Optional features of the M14K processor include debug
logic, an AMBA A HB-Lite bus controller, a coprocessor
interface, a user-defined instruction (UDI) interface, and
a flash-memory accelerator. T he A HB-Lite controller has
a unified memory interface for both instructions and data,
instead of the separate instruction and data interfaces found
on some other MIPS processors. Two unidirectional 32-bit
channels handle loads and stores. The M14K has a “modi-
fied Harvard” memory architecture, because the unified
bus splits into separate internal datapaths feeding two local
memories for instructions and data. E ach internal SRAM
has 32-bit addressing, so (in theory) each memory can be as
large as 4GB.

The optional coprocessor interface is compatible with
the M IPS-standard COP 2 interface found on other M IPS
processors. It’s 32 bits wide, and it allows chip developers
to attach additional processor cores or application-specific
logic. T he M 14K implementation isn’t backward compat-
ible with COP 1, which was designed for a floating-point
math coprocessor.

The optional UDI interface supports the MIPS CorExtend
technology, which allows developers to add application-
specific instructions. Although CorExtend doesn’t make the
M14K core as configurable as the processors from ARC and
Tensilica, it’s quite powerful, and it’s an important feature
missing from ARM processors. (See MPR 3/3/03-01, “MIPS
Embraces Configurable Technology.”)

Figure 3 shows another valuable option for the M14K—
a flash-memory accelerator. T his block will be especially
appreciated in microcontrollers that store application code
in slow, nonvolatile flash memory. Essentially, the accelera-
tor is a configurable prefetch buffer in SRAM. Chip design-
ers can implement two cache lines. Each line can be 32, 64,
or 128 bits deep. Base addresses are programmable, so each
line can point to any region of flash memory.

The prefetch buffer can load instructions faster than the
processor can drain it. For example, assume that a 100MHz
M14K processor is fetching a stream of eight instructions
(including two loads or stores) from 50ns (20MHz) flash

memory. Without prefetch, the processor averages 4.2 clock
cycles per instruction fetch. With prefetch, and assuming
a 100% hit rate in the buffer, the processor fetches one
instruction every cycle. Assuming a 75% hit rate, the pro-
cessor averages 1.8 cycles per instruction. Assuming a 50%
hit rate, the average is 2.6 cycles per instruction. The flash
accelerator is a relatively small feature, but it can improve a
microcontroller’s responsiveness.

Interrupting the ARM Race
In another bid to make its processors snappier, M IPS has
significantly improved the response times for interrupts in
both the M 14K and M 14Kc cores. M IPS processors aren’t
particularly sluggish in this regard, but ARM has been mak-
ing similar improvements to Cortex-family cores intended
for microcontrollers, so MIPS has to stay in the arms race.
Faster interrupts will make the M 14K and M 14Kc more
suitable for real-time systems.

Three enhancements make the difference. First, the M14K
and M14Kc can prefetch the target address of an interrupt han-
dler, saving precious time when the interrupt triggers. Second,
the new processors adjust their stack pointers and perform
other related chores in hardware instead of in software. Third,
a new instruction (IRET) is a special return-from-interrupt
that’s better for this purpose than the usual ERET instruction.
The IRET instruction explicitly supports the chaining of mul-
tiple interrupts. Figure 4 illustrates this process.

In the older M 4K and 4KEc processors, the latency for
the interrupt prologue and chaining is 34 clock cycles, and
the epilogue requires another 32 cycles. That’s a total of 66
cycles for two chained interrupts. In the new M 14K and
M14Kc processors, the latency for the prologue and chain-
ing is 17 cycles, and the epilogue takes four cycles. That’s a
total of 21 cycles—more than three times faster.

ARM’s C ortex-M0 and C ortex-M3 have similar inter-
rupt latencies, but comparisons are tricky. As we noted in

FLASH

D-SRAM

AHB-Lite BIU

Flash
Accelerator

I-SRAM

MIPS
M14K
Core

Figure 3. M14K processor flash-memory accelerator. This optional block
adds an SRAM prefetch buffer to the M14K core. The two-line buffer is
configurable to depths of 32, 64, or 128 bits. MIPS says the buffer can
make flash memory seem four times faster. Performance scales even better
at higher core frequencies.

� MicroMIPS Crams Code

	 © I n - S t a t 	 N o v e m b e r 1 6 , 2 0 0 9 	 m i c r o p r o c e ss o r r e p o r t

our March 2009 report on the Cortex-M0, the comparison
depends on what’s included in the calculation. By our count,
the Cortex-M0 can handle a chained interrupt in 22 cycles,
and the C ortex-M3 can handle a chained interrupt in 18
cycles. O ur comparison (based on vendor-supplied data)
may not be perfectly cycle-accurate, but it does appear that
the latest M IPS and ARM cores for microcontrollers have
similar interrupt latencies. (See MPR 3/2/09-01, “ARM’s
Smallest Thumb.”)

Natively, the M14K and M14Kc cores support a vectored
interrupt mode with only eight sources. To get more, chip
designers must add an external interrupt controller, which
can support as many as 256 sources. The M14K and M14Kc
can also support up to 256 interrupt priority levels, ver-
sus 64 in the M4K and 4KEc processors. Any interrupt can
switch to a shadow register set, which saves even more time,
because the processor needn’t flush and restore its registers
before entering the interrupt handler.

MIPS has bundled all these improvements—shorter inter-
rupt latencies, faster chaining, the IRET instruction, support
for 256 priorities, and the new atomic instructions—into a
new Microcontroller Application-Specific Extension (MCU-
ASE) that may appear in other MIPS processors.

M14Kc Adds MMU and Caches
The M 14Kc core is much like the M 14K core, but it’s
designed for somewhat higher-end applications. It has a
full-fledged MMU with a TLB, so it can manage embedded
operating systems that address virtual memory. T he T LB
actually comprises three buffers: a unified TLB with 16 or
32 entries (configurable); a four-entry instruction TLB; and
a four-entry data TLB. All are fully associative. The unified
TLB can map up to 64 pages of virtual memory, and page
sizes can range from 1KB to 256MB. C hip designers can
replace the TLB with the same fixed-map MMU found in
the M14K core, but that option would negate the primary

advantage of the M14Kc.
Another difference between the

M14Kc and its little brother is the
first-level memory system. Instead
of local memories, the M 14Kc has
configurable instruction and data
caches, up to 64KB each. Caches can
be one-, two-, three-, or four-way set-
associative. E ach way can be 1KB,
2KB, 4KB, 8KB, or 16KB. Parity bits
help detect soft errors.

To supplement the caches, chip
designers can add separate scratch-
pad RAM s for instructions and
data. E ach scratchpad has its own
32-bit I/O interface to local on-chip
memory, bypassing the A HB-Lite
bus. This arrangement provides fast,
no-miss access and deterministic
behavior—critical features in real-
time applications. T he scratchpads
are configurable; each can be as large
as 1MB. O ptionally, a portion of
scratchpad memory can replace one

Cycles 4

EpilogueChainingPrologue

710

21 cycles total

IRQ n

IRQn+1
ISR n ISR n+1

Figure 4. Interrupt chaining in the MIPS32 M14K and M14Kc processors. The first interrupt, IRQn, is quickly followed by a second interrupt, IRQn+1.
The new IRET instruction jumps directly from IRQn to IRQn+1 without returning to the main instruction stream. When the last interrupt in the chain
terminates, IRET returns to the mainline code.

UDI
I/F

COP2
I/F

Interrupt
I/F

MDU

GPR Decoder

microMIPS

MIPS32

Execution Unit

System
Coprocessor

Power Mgt

AHB-Lite
BIU

D-Cache Control

D-SRAM I/F

Debug & Profiler

D-Cache

MMU

I-Cache Control

I-SRAM I/FI-Cache

Figure 5. MIPS32 M14Kc processor block diagram. This core has much in common with the simpler
M14K core. The main differences are parity-protected caches and a full-fledged MMU for running
higher-end embedded operating systems. Optional features, shown in dark purple, include debug
logic, dual scratchpad RAMs, the MIPS COP2 coprocessor interface, and CorExtend user-defined
instructions (UDI).

�MicroMIPS Crams Code

	 © I n - S t a t 	 N o v e m b e r 1 6 , 2 0 0 9 	 m i c r o p r o c e ss o r r e p o r t

way of a cache (up to 16KB). Figure 5 is a block diagram of
the M14Kc core.

The AMBA A HB-Lite bus controller is a standard fea-
ture of the M14Kc, not an option. Like the controller in the
M14K, it has unidirectional 32-bit read and write channels
that fetch instructions and data from unified memory. Once
fetched, instructions and data follow different datapaths to
the caches. By including AHB-Lite, MIPS is acknowledging
the rising popularity of this bus interface, which originated
at ARM. Fewer SoC designs seem to be using the Open Core
Protocol (OCP) or IBM CoreConnect buses these days.

Comparing Power and Performance
Power-management features and configurable clock gating
help reduce the power consumption of both new processors.
These cores are small to begin with, occupying significantly
less than one square millimeter of silicon even when optimized
for speed and manufactured in an older 0.13-micron CMOS
process. (It’s still a common process for microcontrollers.)

Using TSMC’s 130nm-G process, MIPS estimates that the
M14K core will require only 0.35mm2 of silicon when syn-
thesized for minimum area and only 0.68mm2 when synthe-
sized for maximum speed. The worst-case maximum clock
frequencies for those configurations will be 100MHz and
180MHz, respectively. A t those frequencies, performance
will range from 150 Dhrystone mips to 270Dmips. M IPS

estimates that typical power consumption (as measured
under simulation while running Dhrystone) will be 12mW
for the area-optimized configuration and 39.6mW for the
speed-optimized configuration.

In a more up-to-date (but hardly cutting-edge) T SMC
90nm-G process, the M14K core is even smaller. An area-
optimized configuration will occupy only 0.21mm2 of
silicon, deliver 290Dmips at 193MHz, and consume only
11.6mW. A speed-optimized configuration will occupy
0.51mm2, deliver 442Dmips at 295MHz, and consume only
35.4mW. O f all the aforementioned configurations, the
area-optimized core in 90nm is the most energy efficient by
far, delivering 25Dmips per milliwatt.

The M14Kc core is larger and more power hungry, but
only in relative terms. In T SMC’s 90nm-G process, an
area-optimized configuration requires 0.37mm2 of silicon,
delivers 291Dmips at 194MHz, and consumes 15.5mW. A
speed-optimized configuration requires 0.82mm2, deliv-
ers 483Dmips at 322MHz, and consumes 48.3mW. T he
area-optimized core is the most energy efficient, delivering
18.75Dmips per milliwatt. T able 2 summarizes these esti-
mates and notes the physical libraries used for synthesis.

Comparing MIPS and ARM
MIPS designed the M14K and M14Kc cores to challenge the
ARM926EJ-S and C ortex-M3, two popular cores in 32-bit

Feature
MIPS M14K

Speed Optimized
MIPS M14K

Area Optimized
MIPS14Kc

Speed Optimized
MIPS M14Kc

Area Optimized

TSMC 90nm-G

Transistors Standard Vt Standard Vt Standard Vt Standard Vt

Logic Library Virage HS TSMC HP Virage HS TSMC HP

Memory Library Dolphin Virage HD Dolphin Virage HD

Core Frequency 295MHz 193MHz 322MHz 194MHz

Core Area 0.51mm2 0.21mm2 0.82mm2 0.37mm2

Core Power (typical) 0.12mW / MHz 0.06mW / MHz 0.15mW / MHz 0.08mW / MHz

Dhrystone 2.1 442Dmips 290Dmips 483Dmips 291Dmips

Power Efficiency 12.5Dmips / mW 25Dmips / mW 10Dmips / mW 18.75Dmips / mW

TSMC 130nm-G

Transistors Standard Vt Standard Vt Standard Vt Standard Vt

Logic Library TSMC HP Artisan TSMC HP Artisan Metro

Memory Library Virage HS Virage HD Virage HS Virage HD

Core Frequency 180MHz 100MHz 205MHz 100MHz

Core Area 0.68mm2 0.35mm2 1.29mm2 0.61mm2

Core Power (typical) 0.22mW / MHz 0.12mW / MHz 0.41mW / MHz 0.14mW / MHz

Dhrystone 2.1 270Dmips 150Dmips 307Dmips 150Dmips

Power Efficiency 6.8Dmips / mW 12.5Dmips / mW 3.6Dmips / mW 10.7Dmips / mW

Table 2. MIPS32 M14K and M14Kc processor power/performance comparison. All numbers are MIPS estimates based on simulations with
preliminary RTL. Although this table specifies the physical libraries that MIPS used when compiling the SRAMs, the silicon-area measure-
ments are for the CPU cores only, not including caches or local memories. Ditto for the power estimates, which represent “typical” con-
sumption when running Dhrystone 2.1 with minimal I/O.

� MicroMIPS Crams Code

	 © I n - S t a t 	 N o v e m b e r 1 6 , 2 0 0 9 	 m i c r o p r o c e ss o r r e p o r t

Feature
MIPS
M14K

MIPS
M14Kc

MIPS
M4K

MIPS
4KEc (Soft)

ARM
Cortex-A5

ARM
Cortex-M3

CPU ISA MIPS32 R2 MIPS32 R2 MIPS32 R2 MIPS32 R2 ARMv7-A ARMv7-M

Arch. Width 32 bits 32 bits 32 bits 32 bits 32 bits 32 bits

16-Bit Instr. microMIPS microMIPS MIPS16e MIPS16e Thumb, Thumb-2 Thumb, Thumb-2

Related Core MIPS32 M4K MIPS32 4KEc MIPS32 4K MIPS32 4KE Cortex-A8 —

GPUs
32 x 32 bits
1–16 sets

32 x 32 bits
1–16 sets

32 x 32 bits
1–16 sets

32 x 32 bits
1–16 sets

16 x 32 bits 16 x 32 bits

Pipeline Depth 5 stages 5 stages 5 stages 5 stages 8 stages 3 stages

Branch Pred. — — — — Dynamic Speculation

L1 Cache (I / D) — 0–64K each — 0–64K each 4K–64K each —

L2 Cache — — — —
Optional
16K–8MB

—

Instr. RAM 0–4MB 0–1MB 0–4GB 0–1MB — 0–1MB

Data RAM 0–4MB 0–1MB 0–4GB 0–1MB — 0–1MB

Memory
Management

MMU
(Fixed map)

MMU
(TLB)

MMU
(Fixed map)

MMU
(TLB)

MMU
(TLB)

Optional MPU
(8 regions)

Coherent MP — — — —
Optional
1–4 cores

—

Hardware
Multiplier

Fast or small
32 x 16 bits

Fast or small
32 x 16 bits

Fast or small
32 x 16 bits

Fast
32 x 16 bits

Single-cycle
32 x 32 bits

Single-cycle
32 x 32 bits

External
Interrupts

8 (vectored)
256 (external)*

8 (vectored)
256 (external)*

6 (vectored)
256 (external)*

6 (vectored)
256 (external)*

n/a
Configurable

1–240

Interrupt
Latency

21 cycles
(chained)

21 cycles
(chained)

66 cycles
(chained)

66 cycles
(chained)

n/a
18 cycles
(chained)

Interrupt
Priorities

256 256 64 64 n/a n/a

Privilege Modes 2 2 2 2 2 + TrustZone 2

Custom
Extensions

Optional
(CorExtend)

Optional
(CorExtend)

Optional
(CorExtend)

Optional
(CorExtend)

— —

System
Interface

MIPS SRAM
1 or 2 x 32 bits

or AHB-Lite
2 x 32 bits

AHB-Lite
2 x 32 bits

MIPS SRAM
1 or 2 x 32 bits

MIPS BIU
32 bits

AMBA-3 AXI
1 x 64 bits

Optional 2 x 64 bits
(multiprocessor)

AHB-Lite
2 x 32 bits

Coprocessor
Interface

MIPS COP2
32 bits

MIPS COP2
32 bits

MIPS COP2
32 bits

MIPS COP2
32 bits

— —

Core Frequency
(Max)

295MHz
(90nm-G)

322MHz
(90nm-G)

200–414MHz
(90nm-G)

250–420MHz
(90nm)

480MHz–1.0GHz
(40nm-LP, 40nm-

G)

50–191MHz
(90nm-G)

Core Area
@ Max Freq

0.51mm2
(90nm-G)

0.82mm2
(90nm-G)

0.12–0.53mm2
(90nm-G)

0.65–1.2mm2
(90nm, 8K caches)

0.27mm2
(40nm-LP)

0.25–0.37mm2
(90nm-G)

Dhrystone 2.1 1.5Dmips / MHz 1.5Dmips / MHz 1.6Dmips / MHz 1.6Dmips / MHz 1.57Dmips / MHz 1.25Dmips / MHz

Power (typical)
35.4mW
(90nm-G)

48.3mW
(90nm-G)

8.0–62.1mW
(90nm-G)

37.5–109.2mW
(90nm)

57.6mW
(40nm-LP)

2.0–13.3mW
(90nm-G)

Power Efficiency
Dmips / mW

12.5
(90nm-G)

10.0
(90nm-G)

10–40
(90nm-G)

6.1–10.6
(90nm)

13.0
(40nm-LP)

31.2–17.9
(90nm-G)

Introduction Feb 2010 Feb 2010 2002 2003 2009 2004

Table 3. Feature comparison of the MIPS32 M14K, M14Kc, M4K, 4KEc, ARM Cortex-A5, and Cortex-M3 cores. The MIPS M14K will
compete with the ARM Cortex-M3 for microcontroller designs. The MIPS M14Kc will compete with the ARM Cortex-A5 for SoC designs
requiring a full-fledged MMU to run higher-end embedded operating systems. When comparing these performance specifications—all of
them estimates provided by the vendors—mind the differences in fabrication processes. MPR was able to obtain estimates at 90nm for all
cores except the new Cortex-A5, which is specified in a 40nm low-leakage process. *The MIPS processors require an external interrupt
controller to support 256 interrupts. (n/a: data not available.)

�MicroMIPS Crams Code

	 © I n - S t a t 	 N o v e m b e r 1 6 , 2 0 0 9 	 m i c r o p r o c e ss o r r e p o r t

microcontrollers and SoCs. M eanwhile, ARM was working
on the Cortex-A5, which was announced less than two weeks
before M IPS unveiled its new processors. T he M 14K and
M14Kc look good against the existing ARM cores, generally
beating them in clock-frequency headroom, size, and power.
The Cortex-A5 is stiffer competition but not a clear winner.

Table 3 summarizes the features of the M IPS32 M 14K
and M14Kc cores and compares them with the new ARM
Cortex-A5 and existing Cortex-M3. This table also includes
the MIPS32 M4K and 4KEc processors that the new MIPS
cores supersede. A s usual, it’s almost impossible to fairly
compare these vendor-supplied power and performance
estimates, because they assume different fabrication pro-
cesses and other unknown variables (exact core configura-
tions, logic-synthesis scripts, cell libraries, etc.). N everthe-
less, a few things stand out.

The new microMIPS 16/32-bit instruction set should
erase the code-density handicap that has dogged MIPS since
ARM introduced the 16/32-bit Thumb-2 instruction set in
2003. Or, to put it another way, microMIPS should erase the
performance handicap that dogged M IPS when programs
used the MIPS16e extensions, which sap more throughput
than Thumb-2 does.

The new M IPS processors significantly improve their
interrupt-handling performance and flexibility, achieving
approximate parity with ARM ’s processors. C ode density
and interrupt handling are especially important for micro-
controllers, a renewed target for MIPS. Even if MIPS doesn’t
clearly beat ARM in every category, reaching parity is a wor-
thy accomplishment.

MIPS has two advantages that can boost performance
without cranking up the clock speed, but they demand extra
effort from developers. O ne advantage is register shadow-
ing. By configuring an M14K or M14Kc core with additional
sets of GPRs—up to 16 sets of 32 registers—developers can
accelerate context switching and interrupt handling. ARM’s
single set of only 16 registers seems claustrophobic in com-
parison. Another MIPS advantage is CorExtend, which lets
designers add application-specific instructions. C orExtend
requires diligent performance profiling and RTL handiwork,
but the payoffs can be enormous.

ARM has advantages, too. The Cortex-A5 leaves behind
the aging A HB bus and adopts the latest AMBA -3 A XI
standard. A XI is more efficient than A HB-Lite, which
MIPS offers for the M 14K and M 14Kc. And, for higher-
performance applications, the Cortex-A5 offers the option
of symmetric multiprocessing with up to four cores and
memory coherency.

Although the M IPS COP 2 interface makes multicore
designs possible, intercore communications and memory
coherency are exercises for the designer, not off-the-shelf
features. T o match the multicore flexibility of the C ortex-
A5, M IPS developers must step up to the M IPS32 1004K
multiprocessor core. (See MPR 4/28/08-01, “Multicore Mul-
tithreading With MIPS.”)

MIPS Fares Well Against ARM
Perhaps the most surprising result of comparing the new
MIPS processors with ARM’s best cores is that ARM no lon-
ger has a clear advantage in power consumption, core area,
and performance. Usually, those are ARM’s strengths.

For instance, using the data in T ables 2 and 3, we can
compare the two microcontroller cores—the M IPS M 14K
and ARM Cortex-M3—in the same TSMC 90nm-G process.
An area-optimized M14K will consume 11.6mW at 193MHz
in 0.21mm2 of silicon. A speed-optimized C ortex-M3 will
consume 13.3mW at 191MHz in 0.37mm2 of silicon. T he
M14K requires less power and silicon at virtually the same
clock frequency. In power efficiency, the M 14K wins, too:
25Dmips per milliwatt versus 17.9Dmips per milliwatt.

Note that we compared an area-optimized M 14K with
a speed-optimized C ortex-M3. T hat’s because a speed-
optimized M14K can reach a much higher clock frequency
(295MHz). A ssuming the two processors are clocked to
deliver similar performance, the M14K will use less power
and silicon. (The M 14K has a throughput advantage of
1.5Dmips per megahertz versus 1.25Dmips per megahertz
for the Cortex-M3.)

ARM says an area-optimized C ortex-M3 consumes a
mere 2.0mW. But it would be a trifle larger than the M14K
core (0.25mm2 versus 0.21mm2), and ARM specifies a clock
frequency of only 50MHz. In contrast, M IPS specifies
193MHz for its area-optimized M14K core in the same pro-
cess. Slowing the M14K core to 50MHz would drop power
consumption to about 3.0mW, only a milliwatt more than
the Cortex-M3. Realistically, a developer targeting a 90nm
process probably needs more than 50MHz for the target
application.

Comparing the M14Kc with the new Cortex-A5 is almost
pointless, because we have 90nm data for the MIPS proces-
sor and 40nm data for the ARM processor. That’s a difference
of two process generations. Also, the MIPS32 24K or 1004K
processors are probably better matches for the Cortex-A5, in
terms of features.

Nevertheless, the M 14Kc looks pretty good. Fabricated
in 90nm-G, a speed-optimized M14Kc consumes 48.3mW
at 322MHz in 0.82mm2 of silicon. Fabricated in 40nm-LP,
even an area-optimized Cortex-A5 consumes more power:
57.6mW versus 48.3mW. The Cortex-A5 might fare better
when fabricated in 40nm-G, which is leakier than 40nm-LP
but uses less dynamic power.

As we would expect from the huge difference in pro-
cess technologies, the 40nm C ortex-A5 is much smaller
(0.27mm2 versus 0.82mm2) and faster (480MHz versus
322MHz) than the 90nm M 14Kc. A ssuming two process
shrinks to 40nm, the M 14Kc should be very competitive
with ARM’s latest core.

Competition Heats Up
Historically, ARM tends to have the smallest, lowest-power
processors, whereas MIPS tends to excel in high performance.

10 MicroMIPS Crams Code

	 © I n - S t a t 	 N o v e m b e r 1 6 , 2 0 0 9 	 m i c r o p r o c e ss o r r e p o r t

To some extent, those tendencies reflect the history of each
company. Almost from the start, ARM focused on embed-
ded systems, whereas MIPS originally focused on worksta-
tions and servers.

Lately, ARM has been reaching toward higher per-
formance, because that is where ARM ’s biggest market
(mobile phones) is going. Meanwhile, MIPS is migrating

toward lower power, because that’s where its biggest mar-
ket (consumer electronics) is going. At the same time, both
companies fear encroachment by the x86, because mobil-
ity is where Intel’s biggest market (personal computing) is
going.

For the harried engineers at ARM, MIPS, and Intel, life is
getting tougher. But it’s good news for chip designers, who
are getting more and better choices. E mbedded-processor
cores are growing more powerful and power efficient. The
MIPS M14K and M14Kc are arriving hot on the heels of the
ARM Cortex-A5 and Tensilica’s new Xtensa LX3 and Xtensa
8 (which MPR will cover soon). Another competitor, ARC
International, was recently acquired by Virage Logic, which
can offer one-stop shopping for SoC designers. (See MPR
9/14/09-01, “Summer Shopping Spree.”)

The M 14K and M 14Kc processors—and, especially, the
microMIPS ISA—move M IPS T echnologies in a direction
the company needs to go. T hey are worthwhile upgrades
from existing MIPS processors and the MIPS32 ISA. They
will strengthen M IPS’s competitive position against ARM,
its strongest foe.  

To subscribe to Microprocessor Report, phone 480.483.4441 or visit www.MPRonline.com

P r i c e & Av a i l a b i l i t y

The MIPS32 M14K and MIPS32 M14Kc processors
are synthesizable cores delivered in Verilog format.
MIPS expects to ship the final RTL in February 2010.
MIPS doesn’t publicly disclose licensing fees or royal-
ties. For more information:
www.mips.com/products/processors/32-64-bit-cores/
mips32-m14k/
www.mips.com/products/processors/32-64-bit-cores/
mips32-m14kc/

