APP. B

684 PLOATING-POINT NUMBERS

of approximations. Increasing the number of digits in the exponent increases the
size of regions 2 and 6 by shrinking regions 1, 3, 5, and 7. Figure B-2 shows the
approximate boundaries of region 6 for floating-point decimal numbers for various

sizes of fraction and exponent.

Digits in fraction | Digits in exponent | Lower bound Upper bound
3 1 10717 10°
3 2 107'% 10%
3 3 10—1 002 1 0999
3 4 1 0—1 ogo2 1 09999
R 1 107® 10°
4 2 107108 10%
4 3 10—1 003 10999
4 4 10—10003 109999
5 1 107" 10°
5 2 107104 10%
5 3 10f1 004 10999
5 4 10-10004 109999
10 3 1071008 10%%
20 3 10711 10%%

Figure B-2. The approximate lowes and upper bounds of expressible (unmor-
malized) floating-point decimal numbers.

A variation of this representation is used in compuiers. For efficiency, expo-
nentiation is to base 2, 4, 8, or 16 rather than 10, in which case the fraction consists
of a string of binary, base-4, octal, or hexadecimal digits. If the leftmost of these
digits is zero, all the digits can be shifted one place to the left and the exponent
decreased by 1, without changing the value of the number (barring underflow). A
fraction with a nonzero leftmost digit is said to be normalized.

Normalized numbers are generally preferable to unnormalized numbers, be-
cause there is only one normalized form, whereas there are many unnormalized
forms. Examples of normalized floating-point numbers are given in Fig. B-3 for
two bases of exponentiation. In these examples a 16-bit fraction (including sign
bit) and a 7-bit exponent using excess 64 notation are shown. The radix point is
the left of the leftmost fraction bit—that is, to the right of the exponent.

B.2 TEEE FLOATING-POINT STANDARD 754

Until about 1980, each computer manufacturer had its own floating-point for-
mat. Needless (o say, all were different. Worse yet, some of them actually did
arithmetic incorrectly because floating-point arithmetic has some subtieties not ob-
vious to the average hardware designer. '

IEEE FLOATING-POINT STANDARD 754

Example 1: Exponentiation to the base 2
22 54 oB 8 410

T J"'J il

Unnormalized: 0 1010100 0 0 0 0 0 0 0 0 0 1011 =250 %2 12y qyp
—— e ®

16
Sign Excess 64 Fractionis 1x 2712 1 » 2712 +1x27%) =432

+ exponentis +1x 275 xp7*0
84 — 64 =20
To normalize, shift the fraction teft 11 bits and subtract 11 from the exponent.

Normafized: 0 1001001 11 011 00000000000 =2(1x2+tx22qxs?
e 5
Sign Excess 64 Fracticnis 1x27" +1x 22 +1x27) =432
+ exponent is +1x2tpixo®
73-64=9
Example 2: Exponentiation to the base 16

Unnormalized: 0 1000101 0000 0001 1011 :165(Tx16“3+Bx164)=432
e e .
Sign Excess 64 Fractionis 1 x 16 + B x 167
+ exponentis
68 -64=5
To normalize, shift the fraction left 2 hexadecimal digits, and subtract 2 from the exponent.

Normalized: 0 1000011 0001 1011 0000 0000 =16%(1x16"+Bx 167 =432
Mt ————— "

Sign Excess 64 Fractionis 1 x 167 + Bx 1672
+ exponentis
67-64=3

Figure B-3. Examples of normalized ffoating-peint numbers.

To rectify this situation, in the late 1970s IEEE set up a committee to stan-
dardize floating-point arithmetic. The goal was not only to permit floating-point
data to be exchanged among different computers but also to provide hardware de-
signers with a model known to be correct. The resulting work led to IEEE Stan-
dard 754 (IEEE, 1985). Most CPUs these days (including the Intel and JVM ones
studied in this book) have floating-point instructions that conform to the IEEE
floating-point standard. Unlike many standards, which tend o be wishy-washy
compromises that please no one, this one is not bad, in large part because it was
primarily the work of one person, Berkeley math professor William Kahan. The
standard will be described in the remainder of this section.

The standard defines three formats: single precision (32 bits), double precision
(64 bits), and extended precision (80 bits). The extended-precision format is in-
tended to reduce roundoff errors. It is used primarily inside floating-point arith-
metic units, so we will not discuss it further. Both the single- and double-precision
formats use radix 2 for fractions and excess notation for exponents. The formats
are shown in Fig. B-4.

Both formats start with a sign bit for the number as a whole, 0 being positive
and 1 being negative. Next comes the exponent, using excess 127 for single

FLOATING-POINT NUMBERS

Bits 1 23

” l Fraction J

S'/ h Exponent
ign

(@)

Bits 1 11 52
Exponent Fraction

Sign
(b)

Figure B-4. 1EEE floating-point formats. (a) Single precision. (b) Double precision.

precision and excess 1023 for double precision. The minimum (0) and maximuin
(255 and 2047) exponents are not used for normalized numbers; they have special
uses described below. Finally, we have the fractions, 23 and 52 bits, respectively.

A normalized fraction begins with a binary point, followed by a 1 bit, and then
the test of the fraction. Following a practice started on the PDP-11, the authors of
the standard realized that the leading { bit in the fraction does not have to be stor-
ed, since it can just be assumed to be present. Consequently, the standard defines
the fraction in a slightly different way than usual. It consists of an implied 1 bit, an
implied binary point, and then either 23 or 52 arbitrary bits. If all 23 or 52 {raction
bits are Os, the fraction has the numerical value 1.0; if all of them are 1s, the {rac-
tion is numerically slightly less than 2.0. To avoid confusion with a conventional
fraction, the combination of the implied 1, the implied binary point, and the 23 or
52 explicit bits is called a significand instead of a fraction or mantissa. All nor-
malized numbers have a significand, s, in the range 1 <5 < 2.

The numerical characteristics of the [EEE floating-point numbers are given in
Fig. B-5. As examples, consider the numbers 0.5, 1, and 1.5 in normalized sin-
gle-precision format. These are represented in hexadecimal as 3F000000,
3ER00000, and 3FCO0000, respectively.

One of the traditional problems with floating-point numbers is how 0 deal
with underflow, overflow, and uninitiatized numbers. The IEEE standard deals
with these problems explicitly, borrowing its approach in part from the CDC 6600.
In addition to normalized numbers, the standard has four other numerical types,
described below and shown in Fig. B-6.

A problem arises when the result of a calculation has a magnitude smaller than
the smallest normalized floating-point number that can be represented in this sys-
tem. Previously, most hardware took one of two approaches: just set the result to
zero and continue, or cause a floating-point underflow (rap. Neither of these is

IEEE FL_OATING-POINT STANDARD 754

ltem Single precision Double precision
Bits in sign 1 1
Bits in exponent 8 11
Bits in fraction 23 52
Biis, total 32 64
Exponent system Excess 127 Excess 1023
Exponent range —126 to +127 -1022 to +1023

Smallest normalized number o128 o1022

Largest normalized number approx. 228 approx. ott2d
Decimal range approx. 107 10 10% approx. 107308 15 10%%8
Smallest denormalized number approx, 1079 approx. 1072

Figure B-5. Characteristics of IEEE floating-point numbers.

Normalized | £ 0 < Exp < Max Any bit pattern

Denormalized Any nonzero bit pattern

Zero

Infinity

Net a number | = 111..1 Any nonzero bit pattern

\Sign bit

Figure B-6. IEEE numerical types.

really satisfactory, so IEEE invented denormalized numbers. These numbers
have an exponent of 0 and a fraction given by the following 23 or 52 bits. The
implicit 1 bit to the left of the binary point now becomes a 0. Denormalized num-
bers can be distinguished from normalized ones because the latter are not permit-
ted to have an exponent of 0.

The smaliest normalized single precision number has a 1 as exponent and 0 as
fraction, and represents 1.0 x 2%, The largest denormalized number has a 0 as
exponent and all 1s in the fraction, and represents about 0. 9999999 x 2'126, which
is almost the same thing. One thing to note however, is that this number has only
23 bits of significance, versus 24 for all normalized numbers.

As calculations further decrease this result, the exponent stays put at 0, but the
first few bits of the fraction become zeros, reducing both the value and the number
of significant bits in the fraction. The smallest nonzero denormalized number con-
sists of a 1 in the rightmost bit, with the rest being 0. The exponent represents

688 FLOATING-POINT NUMBERS APP. B

27'%% and the fraction represents 2723 50 the value is 27'*°. This scheme provides
for a graceful underflow by giving up significance instead of jumping to 0 when
the result cannot be expressed as a normatized number.

Two zeros are present in this scheme, positive and negative, determined by the
sign bit. Both have an exponent of 0 and a fraction of 0. Here too, the bit to the
left of the binary point is implicitly O rather than 1.

Overflow cannot be handled gracefully. There are no bit combinations left.
Instead, a special representation is provided for infinity, consisting of an exponent
with all 1s (not allowed for normalized numbers), and a fraction of 0. This number
can be used as an operand and behaves according to the usual mathematical rules
for infinity. For example infinity plus anything is infinity, and any finite number
divided by infinity is zero. Similarly, any finite number divided by zero yields
infinity.

What about infinity divided by infinity? The result is undefined. To handle
this case, another special format is provided, called NaN (Not a Number). It too,
can be used as an operand with predictable results.

PROBLEMS

1. Convert the following numbers to IEEE single-precision format. Give the results as
eight hexadecimal digits.

a9

b. 5/32
c. —5/32
d. 6.125

2. Convert the following IEEE single-precision floating-point numbers from hex to deci-
mal:

a. 42E48000H
b. 3F880000H
c. 00800000H
d. C7F00000H

3. The format of single-precision floating-point numbers on the 370 has a 7-bit exponent
in the excess 64 system, and a fraction containing 24 bits plus a sign bit, with the bina-
ry point at the left end of the fraction. The radix for exponentiation is 16. The order of
the fields is sign bit, exponent, fraction. Express the number 7/64 as a normalized
number in this system in hex.

4. The following binary floating-point numbers consist of sign bit, an excess 64, radix 2
exponent, and a 16-bit fraction. Normalize them.

a. 0 1000000 00010101 00000001
b, 00111111 0000001111111111
¢. 01000011 1000000000000000

